
Methods for Run-Time Load Management in Distributed Simulation Systems

Greg Schow, STRICOM
Rhonda Freeman, TASC
Anthony Lashley, TASC

Jeff Swauger, TASC
12443 Research Parkway

Orlando, FL 32826

KEYWORDS
RTI, load balancing
ABSTRACT

Large numbers of simulation systems and network assets are required to generate the number of entities needed for
large scale distributed simulation exercises. These assets are both costly and often in limited supply, particularly
high bandwidth networks and simulation centers. As a result, the number of hardware platforms and network
connections required for an exercise are often held to a minimum, which results in computational platforms and
network hardware being loaded at higher levels than would ordinarily be considered optimum, with less excess
capacity available to respond to unexpected changes in the simulation scenario. A method of providing a dynamic
load balancing capability to redistribute network and computational loads in real-time over the entire networked
simulation system to preclude such occurrences is required. This paper proposes an organized approach to the
problem of dynamic load balancing and arrive at a set of algorithms and applications which offer the potential for
significant advances in real-time load balancing performance. The use of predictive algorithms based on network
load monitoring, use of pre-exercise analyses to generate “heuristic triggers” to be used during run-time, expert
systems based on human operator experiences, and intelligent agents based on fuzzy logic artificial intelligence
approaches will all be discussed.

1.0 Problem Description

Large scale High Level Architecture (HLA)
distributed simulation exercises require numerous
high value hardware assets to achieve the large
number of entities and complex interactions
required. These assets include the computational
systems which generate and control the various
aspects of the simulation and the network used to
provide communications between the various
systems. Computational systems are used for a
variety of purposes from simulation of entities
(including behavior) in constructive simulations,
man in the loop simulations, C4I systems, and
weather and other synthetic environments. In order
to minimize costs, the number of hardware platforms
and network connections must be kept to a
minimum, which requires efficient use of all
simulation assets. In general, this results in
computational platforms and network hardware
being loaded at higher levels than might be
optimum, with less excess capacity available to
respond to the varying demands of the exercise. A

balance between the number of entities per hardware
platform and required network bandwidth for multiple
platforms must be maintained. If the network and
platform loading in a simulation exercise could be
maintained at a constant level the minimum amount of
simulation resources required could be easily determined.
Unfortunately the nature of simulation exercises
precludes this level of certainty. The computational and
network loading varies during the course of the exercise
as a result of the interactions between the various
simulated entities. With larger and larger simulation
exercises involving increasing numbers of entities,
platform and network loading are always important
concerns. In the past, loading problems have been dealt
with mostly in the exercise planning phase, however a
simulation exercise is a highly dynamic event, and no
amount of planning can accommodate all possible
engagements. The number of entities a single platform
can efficiently represent depends greatly on the current
level of engagement. Even with very thorough load
balancing planning, unexpected situations where network
and simulation platform bottlenecks appear will surface.
Dynamic load balancing for distributed simulation

systems is therefore an area in which focused
research can be expected to contribute significant
gains in performance.

In previous efforts, the use of Simulation of
Simulation (Sim of Sim) applications have provided
valuable insight into potential bottlenecks and
performance problems. In addition, some real-time
network and simulation platform load monitoring
capabilities have been developed (such as those
being developed under the DISECT project for
incorporation into STOW 97), however both of these
have required human participation and decision
making to operate. The increasing complexity of
large simulation exercises makes it difficult to
impossible for a human operator to monitor and
react to all facets of an exercise. Network loading,
simulation platform loading, and scenario
development must all be continuously evaluated and
monitored.

As a result of the uncertainties present in
large scale distributed simulation exercises, a
method for distributing the network and
computational loads during real time is required.
Unbalanced loads waste computational and network
resources and can lead to decreased performance,
unrealistic simulation results, and even failure of the
simulation exercise and network. The goal of load
balancing is to distribute simulation processing
among the resources involved in a manner that
minimizes both load imbalances and
communications between the systems. Load
balancing must be designed to have a high degree of
transparency for the systems, i.e. the act of load
balancing must not overburden the system and cause
the very type of problems it is intended to address.

While there has been a considerable amount
of theoretical work done on the subject of load
balancing in the area of parallel and distributed
computing, most of this work assumes an a priori
knowledge of the computations to be performed and
the resources available. Implementing a flexible and
adaptive real time load balancing system will require
an integrated, highly automated system with
sufficient intelligence to predict network and
simulation platform loading and react proactively
before problems are encountered. The goal of this
paper is to identify promising approaches to the
problem of dynamic load balancing.

SUBMISSION Technical Approach
System Architecture:

Prior experience gained in the development
of load and network monitoring applications for the

STOW 97 program have been used to determine a high
level system architecture and functional breakdown of the
dynamic load balancing problem. Figure 1 illustrates the
architecture proposed for study and implementation. The
internal architecture of the run-time load management
system consists of six main functional areas as described
below.

Figure 1. Run-Time Load Management System

H L A S I M U L A T I O N L A Y E R

K N O W L E D G E E N G I N E

R U N - T I M E L O A D M A N A G E M E N T S Y S T E M

S C E N A R I O
M O N I T O R

S Y S T E M
O P E R A T O R

L O A D
M O N I T O R

L O A D
C O N T R O L

Interface with the Simulation: As can be seen,
the run-time load management system interfaces with the
HLA simulation via the RTI. Information regarding the
state of the simulation and commands to the system are
passed through the RTI. It is possible that
implementation of an effective system may require the
ability to acquire information independent of the RTI,
such as monitoring of processor and network loads via
polling of individual computers, network nodes and
devices. Ideally the RTI will be used for all interfaces,
although at early stages of development the RTI may not
support all functions required.

Load Monitoring: The load monitoring
function includes all applications and methods used to
acquire information about the loading of the simulation
exercise, including information regarding the status and
load of the network as well as the status of individual
computational assets participating in the exercise. A
significant part of the proposed effort will be to identify
those metrics that provide useful and accurate
information concerning the load of the simulation
system. Each application will likely require tailoring or
calibration of the load monitoring approach to arrive at a
metric that reflects the actual loading of the system. As
an example, ModSAF has been modified for the STOW
97 exercise to allow the load of each ModSAF station to
be evaluated in real time. For this application, a simple
metric such as CPU loading is inadequate, as ModSAF is
designed to use essentially all of the CPU cycle.
Therefore, even an idle ModSAF station simulating no
entities or interactions will appear to be fully loaded
based on CPU utilization. ModSAF is being monitored
using a modification that allows the frame rate of the
simulation to be read by the load monitor. As loading
increases on a ModSAF station, the simulation frame rate
will decrease from the normal, unburdened 15 Hz rate.
At some frame rate the station will “gasp,” indicating

that it is nearing critical loading. Monitoring of the
frame rate allows the status to be monitored so that
load balancing can be triggered prior to this event.

Load Control: The load control function
implements the actual commands to the simulation
exercise (both network and simulation systems) to
implement redistribution of simulation entities and
processes to prevent overload conditions. The exact
nature of these commands will be determined by the
capabilities of the systems and network involved in
the simulation exercise. Ownership management is
an approach that has been used successfully in load
balancing efforts, and the foundation from which
this research will build. In the case of ModSAF, it is
possible to transfer ownership of an entity or entities
from one station to another, shifting the
computational load from highly burdened systems to
low use systems. For networks, dynamic multicast
groups and routers may be capable of being directed
to alter the flow of information to preclude
overloading of key network nodes.

System Operator: The system operator is
a human in the loop who makes decisions regarding
the information on system loading and appropriate
load balancing responses. The main goal of this
effort will be to minimize and eventually eliminate
the need for human intervention.

Scenario Monitor: The scenario monitor
evaluates the progress of the simulation exercise
relative to that predicted by pre-exercise Sim of Sim
analyses. Based on the correlation between the
progression of the actual exercise and that predicted
this function is capable of flagging upcoming
overload conditions with sufficient time to
implement load balancing before difficulties arise.
The scenario monitor can also provide warning that
the simulation exercise is diverging from what was
predicted, and that prior assumptions based on pre-
exercise analysis are no longer valid.

Knowledge Engine: The knowledge
engine is an intelligent agent based system which
monitors the status of the simulation exercise and
makes decisions and recommendations concerning
load balancing. This function is the focus of the
majority of the effort of this task. It is expected that
this function will start out being an assistant to help
a human operator make rapid decisions and
implement appropriate actions. As the nature of the
load balancing problem and it’s relationship to the
system loading metrics being evaluated increases,
the goal is to mature this application to the point
where little or no human intervention is required.
Dynamic Load Balancing Algorithm Development

The dynamic load balancing algorithm
development task will result in the processes that are
implemented in the knowledge engine described above.
Figure 2 illustrates a functional flow diagram of the
predicted tasks related to generation of load balancing
parameters for a particular exercise. It is expected that
the exact nature of the algorithms used and the
implementation chosen will be highly dependent on the
simulation exercise to be performed and the hardware
and software assets that make up the simulation
framework.

Figure 2. Dynamic Load Balancing Algorithm
Development

Exercise
Scenario

Information

Network and
Simulator

Information

Sim of Sim
Application

Simulation
Exercise Events
and Timeline
Predictions

Heuristic
Triggers

Planned Load
Balancing
Strategy

Run Time Load
Management

System

Information regarding the exercise scenario and
simulation assets are used to perform a Sim of Sim
analysis of the simulation exercise. The results of the
Sim of Sim analysis consist of information regarding
predicted timelines, actions, system and network loading,
and potential problem areas that are expected to occur in
the simulation exercise. Various Sim of Sim approaches
will be evaluated, with the accuracy of the predictions
compared with the results of simulations run on real
networked distributed simulation exercises. This
approach will be used to refine the Sim of Sim
application to increase its accuracy in predicting
simulation results. The results of the Sim of Sim for an
exercise will be used to generate information to be used
by the dynamic load balancing application in monitoring
and evaluating simulation exercise status. While a major
goal of this effort is to arrive at generic load balancing
approaches that are useful in a wide variety of situations,
it is predicted that optimum results will not be obtained
from such non-exercise specific approaches. The results
of the Sim of Sim will be used to tailor load balancing
strategies and generate “heuristic triggers” to be used to
by the load balancing algorithm. Heuristic triggers are
events or trends that are predicted to precede occurrence
of network or computer overload for the planned
exercise. These heuristic triggers allow the load
balancing algorithm to better recognize and predict
upcoming problems based on warning signs that are
related to the specific exercise involved. As a result of
these experiments, better generic predictive approaches
to the load balancing problem will be possible.

3.0 For The Future

There are a wide variety of features, or
policies, related to dynamic load balancing that will
be explored in the development of these load
balancing approaches, including:

1. Transfer Policy - What conditions and
events will trigger load balancing?

2. Initiation Policy - Where will the load
balancing be initiated? Will there be one central site
that controls load balancing for the entire system, or
will multiple distributed nodes be used? Do
overloaded systems attempt to offload tasks, or do
under-utilized systems attempt to acquire tasks?

3. Selection Policy - Which tasks will be
transferred between systems? This will be
dependent on the types of systems used in the
simulation exercise.

4. Location Policy - When load balancing
occurs, which system or node will the tasks be
transferred to? How will this be determined?

5. Cooperation Policy - What options do
each system or node have with respect to load
balancing? Does the receiving node have a choice as
to whether to accept the tasks or is the receiver
forced to take on tasks regardless of its internal
evaluation of its load?
The use of expert systems and fuzzy logic based
intelligent algorithms will be investigated to provide
this function. It is expected that a fuzzy logic based
approach will prove to be the most promising
technology for dynamic load balancing due to its
flexibility and adaptability to conditions that are not
easily predicted or defined.

